7 research outputs found

    Comparison of the ERP-Based BCI Performance Among Chromatic (RGB) Semitransparent Face Patterns

    Get PDF
    Objective: Previous studies have shown that combing with color properties may be used as part of the display presented to BCI users in order to improve performance. Build on this, we explored the effects of combinations of face stimuli with three primary colors (RGB) on BCI performance which is assessed by classification accuracy and information transfer rate (ITR). Furthermore, we analyzed the waveforms of three patterns. Methods: We compared three patterns in which semitransparent face is overlaid three primary colors as stimuli: red semitransparent face (RSF), green semitransparent face (GSF), and blue semitransparent face (BSF). Bayesian linear discriminant analysis (BLDA) was used to construct the individual classifier model. In addition, a Repeated-measures ANOVA (RM-ANOVA) and Bonferroni correction were chosen for statistical analysis. Results: The results indicated that the RSF pattern achieved the highest online averaged accuracy with 93.89%, followed by the GSF pattern with 87.78%, while the lowest performance was caused by the BSF pattern with an accuracy of 81.39%. Furthermore, significant differences in classification accuracy and ITR were found between RSF and GSF (p < 0.05) and between RSF and BSF patterns (p < 0.05). Conclusion: The semitransparent faces colored red (RSF) pattern yielded the best performance of the three patterns. The proposed patterns based on ERP-BCI system have a clinically significant impact by increasing communication speed and accuracy of the P300-speller for patients with severe motor impairment

    Effects of Visual Attention on Tactile P300 BCI.

    Get PDF
    Objective. Tactile P300 brain-computer interfaces (BCIs) can be manipulated by users who only need to focus their attention on a single-target stimulus within a stream of tactile stimuli. To date, a multitude of tactile P300 BCIs have been proposed. In this study, our main purpose is to explore and investigate the effects of visual attention on a tactile P300 BCI. Approach. We designed a conventional tactile P300 BCI where vibration stimuli were provided by five stimulators and two of them were fixed on target locations on the participant’s left and right wrists. Two conditions (one condition with visual attention and the other condition without visual attention) were tested by eleven healthy participants. Main Results. Our results showed that, when participants visually attended to the location of target stimulus, significantly higher classification accuracies and information transfer rates were obtained (both for p< 0.05). Furthermore, participants reported that visually attending to the stimulus made it easier to identify the target stimulus in random sequences of vibration stimuli. Significance. These findings suggest that visual attention has positive effects on both tactile P300 BCI performance and user-evaluation

    Stochastic Fractal Based Multiobjective Fruit Fly Optimization

    Get PDF
    The fruit fly optimization algorithm (FOA) is a global optimization algorithm inspired by the foraging behavior of a fruit fly swarm. In this study, a novel stochastic fractal model based fruit fly optimization algorithm is proposed for multiobjective optimization. A food source generating method based on a stochastic fractal with an adaptive parameter updating strategy is introduced to improve the convergence performance of the fruit fly optimization algorithm. To deal with multiobjective optimization problems, the Pareto domination concept is integrated into the selection process of fruit fly optimization and a novel multiobjective fruit fly optimization algorithm is then developed. Similarly to most of other multiobjective evolutionary algorithms (MOEAs), an external elitist archive is utilized to preserve the nondominated solutions found so far during the evolution, and a normalized nearest neighbor distance based density estimation strategy is adopted to keep the diversity of the external elitist archive. Eighteen benchmarks are used to test the performance of the stochastic fractal based multiobjective fruit fly optimization algorithm (SFMOFOA). Numerical results show that the SFMOFOA is able to well converge to the Pareto fronts of the test benchmarks with good distributions. Compared with four state-of-the-art methods, namely, the non-dominated sorting generic algorithm (NSGA-II), the strength Pareto evolutionary algorithm (SPEA2), multi-objective particle swarm optimization (MOPSO), and multiobjective self-adaptive differential evolution (MOSADE), the proposed SFMOFOA has better or competitive multiobjective optimization performance

    Learning Common Time-Frequency-Spatial Patterns for Motor Imagery Classification.

    Get PDF
    The common spatial patterns (CSP) algorithm is the most popular spatial filtering method applied to extract electroencephalogram (EEG) features for motor imagery (MI) based brain-computer interface (BCI) systems. The effectiveness of the CSP algorithm depends on optimal selection of the frequency band and time window from the EEG. Many algorithms have been designed to optimize frequency band selection for CSP, while few algorithms seek to optimize the time window. This study proposes a novel framework, termed common time-frequency-spatial patterns (CTFSP), to extract sparse CSP features from multi-band filtered EEG data in multiple time windows. Specifically, the whole MI period is first segmented into multiple subseries using a sliding time window approach. Then, sparse CSP features are extracted from multiple frequency bands in each time window. Finally, multiple support vector machine (SVM) classifiers with the Radial Basis Function (RBF) kernel are trained to identify the MI tasks and the voting result of these classifiers determines the final output of the BCI. This study applies the proposed CTFSP algorithm to three public EEG datasets (BCI competition III dataset IVa, BCI competition III dataset IIIa, and BCI competition IV dataset 1) to validate its effectiveness, compared against several other state-of-the-art methods. The experimental results demonstrate that the proposed algorithm is a promising candidate for improving the performance of MI-BCI systems

    Correlation-based channel selection and regularized feature optimization for MI-based BCI

    No full text
    Multi-channel EEG data are usually necessary for spatial pattern identification in motor imagery (MI)-based brain computer interfaces (BCIs). To some extent, signals from some channels containing redundant information and noise may degrade BCI performance. We assume that the channels related to MI should contain common information when participants are executing the MI tasks. Based on this hypothesis, a correlation-based channel selection (CCS) method is proposed to select the channels that contained more correlated information in this study. The aim is to improve the classification performance of MI-based BCIs. Furthermore, a novel regularized common spatial pattern (RCSP) method is used to extract effective features. Finally, a support vector machine (SVM) classifier with the Radial Basis Function (RBF) kernel is trained to accurately identify the MI tasks. An experimental study is implemented on three public EEG datasets (BCI competition IV dataset 1, BCI competition III dataset IVa and BCI competition III dataset IIIa) to validate the effectiveness of the proposed methods. The results show that the CCS algorithm obtained superior classification accuracy (78% versus 56.4% for dataset1, 86.6% versus 76.5% for dataset 2 and 91.3% versus 85.1% for dataset 3) compared to the algorithm using all channels (AC), when CSP is used to extract the features. Furthermore, RCSP could further improve the classification accuracy (81.6% for dataset1, 87.4% for dataset2 and 91.9% for dataset 3), when CCS is used to select the channels
    corecore